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1. All the work that has been published up to the
present on the turbulent boundary layer is based, as we
know, on the application of the velocity distributions
theoretically or semi-empirically derived either for the
cage of the motion of a fluid in straight round pipes, i.e.,
for the case of linear distribution of the frictional
shear across the boundary layer (exponential law, logarith-
mic law of von Kdrmdn), or for the case of the motion of a
fluid with congtant shear across the boundary layer (loga- ;
rithmie law of Prandtl-Nikuradse) It ig evident that nel-> %
ther of the above shear distributions corresponds to the & Mj
case of flow about a curvilinear contour and that the ve- Q”V'“
locity profiles do not take into account, for example, the ~
effect of the static pressure gradient which, in the solu-
tion of several very important problems, for example, that
of the separation of flow at the turbulent boundary layer
of a wing, is a factor of greater importance than surface
friction in its effect 'on the boundary layer. In such
cases as these the correctness of employing the velocity
distributions that were theoretically obtalned for other
shearing stress distributions may be questioned,

Experiment shows, in fact, that in a boundary layer
with positive or negative pressure gradient, the ve%001ty
distribution differs considerably from that obtalnkﬁg in a
straight round pipe.

On figures 1, 2, and 2 are shown velocity-digtribu-
tion curves in boundary layers as obtained from the tests
of Gruschwitz (reference 5), The curves are given in non-
dimensional coordinates, the velocity U  being expressed
in terms of the velocity Ug at the outer limit of the
boundary layer, and the distance y . to the wall in terms
of the boundary-layer thickness 8. For comparison, the
curve of distridbution according to the one-seventh power
law is also given., We see that for a positive static

Ppressure gradient in the boundary layer of a wigg (fig. 1)

or in a plane diffuser (fig. 2) the velocities fall con-
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siderably more rapidly as the wall is approached than is
indiceted by the seventh power law. Conversely, for a
negative static pressure gradient in the boundary layer
of a wing or plane converging passage (fig. 3) the veloc-~
ities, as the wall is approached, fall less rapidly than
the seventh power law would indicate. It is seen, more-—
over, that even for an aponroximately constant pressure
gradient the velocity profiles sre not at 211 similar to
one another. A glance at figures 1, 2, and & shows that
the farther along the flow the cross section under congid-~
eration lies, the more do the velocity nroflles deviate
from the seventh-power law.

The above character of the velocity distribution is
alsc evidenced by diverging or converging passages with
plane walls beyond the "anlaufstrecke" (the initial por-
tion), ie.ees, when the entire cross section of the diffus-
er is-taken up by the boundary layer. This is confirmed
by the experimental results of Doench (reference 2) and
Nikuradse {(reference 7).

All that has been szid above indicates the need for
a new determingtion of the velocity profiles in the bound~
ary layer. Assuming that the character of the velocity
distribution depends to a large extent on the character of
the shear distribution across the boundary layer, we shall
consider the nature of the shear distribution for a bound-
ary layer with a pressure gradient.

2e The shear stress in the turbulent boundary layer,
in terms of the shear at the wall, we shall present in the
form ¢f a power series

Lol

\ 2
—:-::i—zAn-i-A, (\%r')'i‘Aa <%> +A.3(> +-A-4<> LI (l)

o

+ A -
the congtants of whlch are determlned by the condltlons
obtain®leg at the outer limit of the boundary layer, for .
the values of T/To,- and its derivatives., For a number A
of terms of the series up to the fourth power term, there
are a sufficient number of such conditions for the deter-—
mlnatlon of the constants. These conditions are as fol=-
lows

. r : ; .
I. At the wall, i.e., for y = 0 the ratio ‘T/Tor.-: 1. T

i

r—c{»n
II, The differential equatlon of an element of a thbe
of flow in the boundary layer of a two—qlmen51onal flow
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may be written, if we heglect the term due to the curva-
ture.of the_element,zln the form

BV - ag + 0T ' ' 5
Py KL 55 © 3n (2)

where p 1s the density of the fluld

1

V, the veiocity
s, lenéth megsured along a streéﬁline

p, static pressure

In, length-measured.aléng.normal to streamline

Since near the surface of the body the normals to the
streamlines differ but little in direction from the normals
to the surface of the body we may, in equation (2), substi=
tute 3r1/3y for d1/dn where y is measured along the
normal to the surface. Equation (2) then assumes the fol-
lowing form:

v _ _dp , 31 (21}

PV 335 35 | 3y

At y = O the left~hand member of (2') becomes zero so
that d1/3y = dp/dS and therefore,

{ T \i-

{ O (To ' 5 ap

Mol 2 oP (11)
la y To aS .

B¢

ITI. At the outer edge of the boundary layer, i,e,, at
v o= 5
(111)
\

by the very def1n1t10n of boundary layer.

v IVe Assuming that the aerivatlve of the total head
..\,\N E,r’_-"-‘-e-v.—.f—-\ y l/ L,+ f' .
. % +/p/ »f
of the fluid suffers no alscontinulty at the outer edge of
the boundary layer (as is confirmed by experiments) and
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noting that outside the boundary layer

3 Ve ) v | |

9SS a5
we obtain from equation (2'), for y = &
oT 3V ., ap
- = 2=+ 2 o
oy PV o8 98 0

and therefore,

| ol 0 (1I7)
{

Ve Differentiating equation (2') with respect to vy,
we have:

ol

3
Loy 38 (3)

[

L’
since, according to the second of Prandtlls boundary layer

differential equations the pressure ig constant transverse
to the layer. At the wall, i.e., at y = 0, +the left~hand
member of equation (2) becomes zero so that

and therefore,

| ————0Zi= 0 (V)

The above conditions can also be obtained by considering
the differential equationsg of Prandtl.

The idea of representiug the shear stress in the
boundary layer in the form of a polynomial was first sug-
gested, as far as is known to the author, by Buri in 1931,
(See reference l.) Buri, however, proposed the gserieg
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T N
J- =1+ T, N ( )

where 6 is the so~called “momentum loss length " 1;5;}
a linear magnitude proportional to the loss of momentum

in the boundary layer, its value being defined by the for=
mula ' .

i
.'r’.

_o v (1 - __> ay = —-; J <Uu;'; u?) ay

We thus see that 6 1is, in fact, a magnitude proportional
to the difference between the momentum of the fluid mass
flowing through the boundary layer with the velocity of
the outer edge of the lgyer and the actual momentum with-
in the boundary layer. -

The coefficients of the polynomial proposed by Buri,
however, cannot be determined since the shear stress and
its derivatives can be evaluated only from the conditions
at the wall, i.e., for y/6 = O. But of these conditions
of Buri, only numbers (I) and (II) were made use of,
Thus, the expression proposed by Buri does not enable the
shear stress distribution across the boundary layer to be
determined and could not therefore be employed by him,

We shall determine the coefficients of the polynomial
from our conditions given above:

a) Using conditions (I), (II), (III), (IV), and (V),
we have

8§ Jp d
Ao = l; Al = '.-":'- -a'-é; Az = 0 .
o &= - (4)
5 Qdp+ § Op
= - 4 - 3 . 223 = 3 4 2 e o=
As 3 T 35 A, 3 S 3S
b) Using conditiomns (I), (II), (III), and -(IV), we
have .
8 ap
o = b = wi5s
(5)
8§ v § ap
= e B e P e Dl = + — ==
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¢) Using conditions (I), (II), and (III), we have

_ 8'.ap. ~ 8 3p
= ‘.f.; gg, 4y = - 1 T (6>

'A'O = 1; Al TO —é—s-

13

] K .
: It should first of all be noted that conditions (I),
(1), (II1), (1IV), and (V) apply equally well to both the
laminar and turbulent boundary flow so that for the same
values of the magnitude ;L %% the nondimensional shear
0
distribution may be considered to be the same for both the
lamingr and turbulent flow with the same degree of accu-
racy with which the series (1) represents the actual shear
distritution. Unfortunately, we have no means at present |
of estimating the degree of approximation of the interpo-~ ;
latiorn formula employed by us. For this reason, the choice
of one or the other combination of conditions can for the
present be decided only on the basis of the best agreement
between the values of the shear forces and velocities as
obtained from any one of the combinations of conditions
with the corresponding values\as obtalned from experiment,
_ Locholerd ghene pra$ia:

The character of theYshear profiles obtained for a
positive vpressure gradient is confirmed by the tests of
Gruschvwitz. Ou figure 5 are shown the shear profiles for
four scctions of the boundary layer of a wing for an angle
of attack of 12° as obtained by Gruschwitz. The absolute
values of the shear differ gomewhat from those obtained by
our comoutations. We assume that this can be explained
only as due to the very great inaccuracy in the experimen-
tal determination of the shear (as brought out by Grusch-
witz himself in his waper). In. the experimental determi-
nation of the shear, it is necessary to differentiate
graphically the total head of the fluid along a streamline.
On account of the small number of cross sections at which
the total head was measured in the tests of Gruschwitz
such differentiation may, to a large extent, be arbitrary,.

It is necegsary therefore that the choice of one or
the other of the combinations of conditions for the deter=
mingtion of the constants of the series be made for the
present only on the basis of the best agreement between the
values of the velocities as obtained from any one of the
combingtion of conditions with the values obtained by ex-
periment since the experimental determination of the veloc-
ities in the boundary layer is much more accurate than the
experimental determination of the shear stresses.
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Figure 4 gives the nondimensional shear profiles for
the-cases 5‘ > 0 and gg = 0, _regspectively. The pro-
files are drawn on the basis of the two combinations of

conditions (I), (II), (III); and (I), (II), (III), (IV),
(V), respectively., We see that even the combination of
the thrce conditions (I), (II), and (III) determines-in
general the character of the shear profile,

It is interesting to note that the profile for the
case of a flat plate, i.e., for 3dp/aS = 0 does not dif-
fer from the straight line shear profile of a straight
round pipe to the same extent as does the profile for the

) : .
case gg > 0. It is thug understandable why, for a condi-
tion where %;5 ig near or equal to gzero (dirigibie body,

flat plate) the use of the velocity profiles obtained for
straight round pipes yields comparatively good results.

3¢ To obtain the velocity distribution it is possible,
first of all, to integrate equation (2" along a streamline.
For this purvose we shall write equation (2!') in the fol-
lowing form:

2
v
o ,/E__> £ 92 _or (2m)
s \ 2 3s oy
Integrating with .respect to S, we arrive of course at

the equation of Bernoulli with the energy qus due to the
internal friction taken into account

a =] )
Py AL or 7

where the subscript denotes some initial point on the
streamline,  V, and p, Dbeing the velocity and static

pressure, ‘respectively, at this point.

The expression for the shear, bearing in mind the
value of the coefficient A, may be written in the follow-
1ng form:

T= g; To"(l+A (Y\-+A2 <V\ ; ;;, ~.T;; ;'

o]

To To jo) 2
= Tothy & vthe 2 yE+. =Tt %E ytapyitazyit...  (8)
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Differentiating T with respect to ¥y, we have:

AT _ 3P 2
55 = gg o+ 2a2y1+ 3a3y + see (9)

Substituting (9) in (7) and integrating the first term in
the expression under the integral sign, we .obtain:

v V.2 g
p - p ° + f (Eaay + 3a3y8 + o-c) ds (10)
o . )

e e

Formula (10) enables the change in velocity along a
streamline to be computed if the change in the ordinagte ¥y
along =2 streamline and the velocity at the initial section
are given, For the latter, at which the velocity distri-
bution may be assumed to follow the exponential or loga~
rithmic law, the cross section at some initial point at the
beginning of the turbulent boundary layer may be taken,
The nearer this section is talen to the starting voint of
the turbulent boundary layer the smaller will be the por-
tion of the profile where the inaccuracy of the initiagl
profile will show upe. The thickness of the boundary layer
and shear at the wall are determined by employing the ex-~
nonential cr logarithmic law.

To determine the varisztion of the coordinagte y along
a streamline, it igs necessary to define a line of flow at
leact to a first approximstion. For this purpose, we shall
assume some known velocity distribution (the exponential
law is best on account of its simplicity) and define lines
of flow ag those at which

y
J Udy = const (11)
where U 1g the tangentiasl compnonent of the velociiy.

Setting un the velocity distribution in this manner
to a first approximation, more accurate lineg of flow may
be determined to a second degree of apnroximation by using
condition (11) for the obtained velocity distribution.
Using the lines of flow of the gecond avproximation, a
more accurate velocity distribution to a second approxima-
tion mey be computed, etce On account of the extreme cum-—
bersomeness of the above method, however, it can only be
applied with difficulty. Morcover, by the above method we
may compute the velocity profiles for various sections of
the boundary layer dbut cannot establish the law of varia-
tion of the velocity across the boundary layer.

.
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4, In order to establish the law of variation of the
velocity across the boundary layer, it is necessary to as-
sumé some form of devendence between the ghéar and the
velocity. In the case of the turbulent boundary layer,
this is equivalent to the assumption of some model for the
turbulence.,. ’

We shall express the shear with the aid of the Prandtl
"Mischungsweg" formula:

r=p 12 & @Hi (12)
dy | ay
where | denotes the so-called "Mischungsweg" or mixing
length and represents a magnitude that is analogous to the
mean free path of a molecule in the kinetic theory of
gasess In turbulent flow the mixing length is a magnitude
proportional to the displacements of aggregate volumss of
the fluid transverse to the general flow direction. In
formula (12) one of the factors du/dy 1is tsken in the.
absolute sense so as to preserve the correspondence between
the sign of the velocity gradient and that of the shear.

With regard to the question as to what are the varig-
bles of which the mixing length is a function, there are
various views l1eld.s von Kidrmdn assumes that the mixing
length is determined by ratio of the first derivative of
the velocity with respect to y to the second derivative,
ises, that the turPulence is locally defined. Prandtl,
for the case where the shear across the boundary layer is
constant, considers the mixing length to be determined by
the distance from the wall and assumes, as a first approx-—
imation, that the mixing length is simply proportional to
the distance from the wall.

In view of the essential difference in the opinions
as to the nature of the mixing length, we shall turn to a
congideration of what experiment has to offer with regard
to this matter.

The outstanding experimental work of Nikuradse (ref-

erence 8) established the fact that in smooth round pipes

at Reynolds Numbers above 100,000 ‘the nondimensional mixing
length, that is, the mixing length divided by the pipe ra-
dius r appears to be a function only of the nondimen-
sional distance y/r from the wall and does not depend on
the Reynolds Humber., Figure 6 shows that the nondimen-
sional mixing length varies with the nondimensional distance
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from the wall for various Reynolds Numbers according to

" the tests of Nikuradse. The Reynolds Number .Re is here
computed from the »ipe diameter and mean velocities. The
form of dewendence shown on figure 6 may be well exnressed
by the following interpolation formula of Prandtl:

.2 ,
% = 0.14 = 0.08 (1 - %) -~ 0.06 <1 - L (13)

It turns out that the above digtribution of the non-
dimensgional mixing length holds not only for round vipes
but also for channels with parallel wallse This is shown
by the tests of Nikuradse and Fritsch (references 4 and 7).
Figure 7 shows the results of these tests. For the value
of r half the channel width is taken. This digtribution
ho%ds moreover for rough round Dlpes (reference 9) (fige -
19).

A consideration of the work of Doench (reference 2)
and Kikuradse {(reference 7) shows that for the case of
diffuser with plane walls the same type of dependence for
the mixing length is obtained and, what is of particular
importance, we have the same vzlue ¢f the nondimensional
mixing length at the axis (outer edge of the boundary
layer)e TFigures 8 and 9 show the distribution of the non-
dimensional mixing length in plene-wall diffusers as ob-
tained from the tests of Doench (fig. 8) and Nikuradse
(fige 9) for various angles of divergence. For plane con-
verglng Dassages, however, a different type of mixing
length digtribution is obtained.

Strictly smeaking, for wlesne-wall diffusers figure 9
shows a certain depvendence of the mixing length oa the an-
gle of divergence of the diffuser and therefore on the
nressure gradient, Bearing in mind, however, that for an
angle of divergence o = Qo the pressure gradient is al=-
ready ncgative, it follows that the effect of the pres-
sure gradient on the mixing length distribution at posi-
tive or small negstive gradients is comparatively small
and in any case less than the effect of the pressure gra-~
dient on the wvelocity distribution.’

LYamamoto expressed the relation between the mixing length
and the distance from the wsll for smooth round pipes by
the formula (reference 6)

1 A 1 /¥

v - Ot <r/ l+'ﬁ‘<3
which gives results dlfferldg very little from those ob-
tained by the Prandtl formula.
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Thus, the nondimensional mixing length may be looked
upon as a more general gnd more fundamental magnitude as
compared with the velocity profile and may be congidered
as approximately the same for a larger class of boundary
layers. On the other hand, we must admit that the effect

-of the pressure gradient on the shear profile is quite

larges In fact, the shear profile shown on figure 4 for
the case g% >0 corresponding to the conditions at the
upper surface of a wing at an angle of attack of 12° is
very different from the shear profile for the case 9vp/38 =
0 for the same shear at the walla.

On the basis of the above data, it may be stated that
for nogitive or small negative pressure gradients the mix-
ing length distribution may be considered as depending only
on the nondimensional distance from the wall and the dif-
ference in the velocity profiles as due only to the differ-
ence in the shear stresses., With the above assumption we
can at once explain the difference in the characterigstic
avppearance of the velocity distribution for a small posi-
tive pressure gradient and a negative pressure gradient,
respectively., For the 'same distribution of the nondimen-
sional mixing length the derivative of the velocity with
respect to ¥y according to formula (12) will in fact in-
crease with increcasing shear stress T The latter, how-
ever, for the same nondlmonclonql distance from the wall
is larger the larger the pressure gradient (fig. 10).
Heonce it follows that for veositive pressurc gradients the
velocity distribution will be dlfferent from that for zero
pressure greadient.

Applying the Prandtl formula of the mixing length _
distribution to the external problem, we easily obtain the
laws of variagtion of the velocity transverse to the bound-
ary layer. The formuls is rewritten in the following
form . :

‘%“: 0;14 - 0,08 (1 - _> 0,06 (1 - I) (131)

5. Employing formula (12), we obtain the following
dlfferentlal equatlon

- B . | - _
/——-}- dy =~ :)—'- @—5 4 <%) ) (14_)

{s

o

"

N
% N

%
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Integrating, we have:

.U—ff‘c e (F)+ o

The arbitrary constant of integration is determined by the
condition that for % =1l; T =0, U=7"Ug so that C = TUs

- /y>
= U + — d = 15
s + ./ rl\ \3 (15)
\§ 7/
The zbove expression may alsc be written in the form

v - Ua+fy/8/ ( (1) (151)

and

Substituting in (15) the values of T and 1/8 from equa-
tions (1) and (13), we zhall have:

— ¥ 1 1 s (7 .o .
6+/To fo/a J 1A <> A <> d(%) (16)

1 o
P 0.14-0.08 {1~ i) ~ 0,06 (1 -—>
\ 87/ 5

since A, 1is always equal tc 1l. Using for 7T the combi-
nation of conditiong (1), (II), (111), (IV), and (V) or the
combvination (I), (II), (III), and (IV) the integral on the
right of equation (13) is reduced to an elliptic integral
of the second kind. In particular, using conditions (I),
(11), (I1I1), (IV), and (V) expression (16) assumes the fol-
lowing form:

e / eas (B)eas (1) + s
U:U5+,\/ -0 S = 8/ 8/ \8/ d <y> (17)
P

2
(L14—0.08(Hm-z> - 0.06 <1~_
\ 5 85/

Using for T the conditions (I), (II), and (III) the in-
tegral at the right of equation (16) assumes the following
finite form:

|e(|

B

r
/8 J'1+A1 Q

vev.s [T
BRCRVARFSEA ,

0.14-0.08 ( 1-
\

+ Ag \/%r'

y4
~ 0406 (l-g)

>}

o |
Nt \,/

@ o0
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Figures 11, 12, and 13 give the velocity distribution for
three sections of the boundary layer at the upper surface
of a wing according to the tests of Gruschwitz for an angle
of attack of 12°, These three sections are near the point
of separation and the velocity profiles are therefore of
particular interest. The velocity profiles for the same
sections computed from formulas (17) and (18) give a suf-
ficiently good agreement with the experimental profiles.
For comparisons there are also given the velocity pro-

files based on the von Kirmdn formula for straight round
tubes: '

o

(AN

ﬁ

§

L

i
I

Ry

wvhere K 1s a constant approximately equal to 0.4.

The velocity profiles based on formula (17) agree bet-
ter with experiment than those based on formula (18) - a
fact that may be explained by the more close approximation
of the shear given by (17) as compzred with (18). The less
favorable agreement of the theoretical with the experimen-—
tal velocity profiles at the section =x = 27.05 cm 1ig evi-
dently explained by the fact that the section is not en-—
tirely in the turbulent boundary region. As a matter of
fact, this section still lies in the region where the
shear at the wall increaseg in the direction from leading
to trailing edge, i.e., in the region of transition. Com=-
binations of conditions (I), (II), (III), and (IV) or (I),
(IT), (III), and (V) give a less good agreement between
the theoretical and exverimental distributions than condi-
tions (I), {(II), (III), (IV), and (V) or even conditions
(1), (I1), and (III).

Figures 14, 15, 16, 17, and 18 give the velocity pro-

4 .flles at five sections of the boundary layer of a symmet-
; rical Joukowsky airfoil at an angle of attack a = - 0.18°

according to the tests of Fage and Falkner (reference 3).

The velocities computed from formulas (17) and (18) and

2lso from the von Kidrmdn formules are likewise given on the

figurcs for the same sectionse The agreement of the test

curves with those computed from (17) and (18) may be con-

sidered as satisfactory.

L]
.Hotwithstanding the fact that the static pressure
gradicent ig small, the difference between the curves com-
puted from (17) and (18) and thc curve of von Kidrmén is
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rather consideratle., It is therefore expedient to take
into account the conditions of the external problem in ob-
taining the velocity profiles even at small static pres-
sure gradientg,

The good agreement with experiment of the velocity
profiles in the turbulent boundary layer of a wing makes
it pessible, in the first place, to proceed to the solu-
“tion of the very important problem of the sevaration cof
the turbulent boundary layer, and in the second place to
compute correctly the reslstance of the surface roughness
in the boundary layer.

6. Let ws introduce, analogous to the "friction ve-

locity" of Prandtl
/T .
Ve = ] (20)
p

the corresponding magnitude for the pressure acting én a
cross section c¢f the boundary layer and denote this mag-
nitude by px. We shall then have

/8 Op

The above expression may bte denoted as the "pressure ve-
locity." TUsing (20) and (21), the integral of equation
(18) may be written as follows:




:
&
|3
4
f.
=53
4

i

N.A.C.A,

Technical

Memorandum Ho.

¥ +p
1 - 2 % TDx%
- 8 .
1
V*g + v V*a 2
z.ta_"_-g_a._'_l__ﬁ - 2R v*z-!,-’io*?. 8 ¥ D
vy v
Mg 1 - "é- l - -é— /
+ == 1ln —_— - +
e V*a y V*g +y\§
——ee + L Y bl
vaZtps® O Lo | TRt 8 -
Y N
8 6
1
/ Vo _Fyze N
2 6
- N
7 K zf_“gf_§___) R LT
- B / . [ ¥,2+D, &
+G arc tan — — +H arec tan P| —mmimm
/ AR \ 1 -2
[ VeZHpy? 8 \ | 8
D~\-*——————§~—/
N i

where the coefficients L.,

dimensional magnitudes depending only on
Since in deriving (22) the lamlnar sublayer was not taken

into account, this formulsas,
Kdrmén formula:

U =

Ua*'?[ln(l“/‘-- s) / %]

D. E, F, G, H, P

vx2 and py?

M27

which is gsimilar to the von

and the Prandtl- leuradﬂe formula'-

U =

-.v .
US + —-t ln -
K

¥y
5

822 15

(19)

(23)

(22)

are non-—
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does not, of course, satisfy the condition at the wall,

since for % = 0, we have U = = =~.
7. In the special case of a flat plate, i.e., for
d
E% = 0, the coefficients of series (1) assume the follow-

ing values:

a) Using the combingtion of conditions (I), (II),
(I11), (IV), and (V):

4o = 1; Ay =0; Ag =0; Az ==4; A, =3 (41)

b) Using combination of conditions (I), (II), and
(111):

Ao = 1; Ay =0; 4p=-1 (61)

Thus for this particular case, expressions (17) and
(18) assume the following form:

4
/s N/1— 4 <y\ +3 \s) CORN

U=Ub +V* f 5
0.14-0.08 /l - —> ~0.06 (l - —>

2
(¥
/8 L=\
U=Us +7% Jf 2\0> a (Z) (181)

’ )

AN v
0,14-0,08 (1 - =) <0.06 <1 - =
( a) 5/

Figure 19 gives the nlot of equations (17!').and
(181) using as coordinates —-=-—— and ek The gsame

figure shows for comparison the curves corresponding to
the von Kirmdn and Prandtl-Nikuradse formulas.

The author expresses nis deep gratitude to Professor
Loytsansky for a number of important suggestions in con-
nection with the above work. All the computations were
carefully carried out by the engineers, P. E. Kuryatnikof?
and S. S. Jacobson, to whom the author expresses his grate- -

ful acknowledgment,

Translation by S. Reiss,
National Advisory Committee for Aeronautics.,
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